SUPPORTING INFORMATION

Exploring Wood as a Sustainable Solution for Water Filtration: Nanoparticle Removal, Size Exclusion and Molecular Adsorption

Antoni Sánchez-Ferrer*, Jenifer Guerrero Parra

Technical University of Munich, School of Life Sciences, Chair of Wood Science, D-80797 Munich, Germany

Antoni Sánchez-Ferrer*:orcid.org/0000-0002-1041-0324; email: sanchez@hfm.tum.deJenifer Guerrero-Parra:email: jenifer.guerrero@tum.de

Figure SI-1	Wood filtration disk and filtration setup			
Figure SI-2	DLS data and fitting autocorrelation function	2		
Figure SI-3	Hydrodynamic diameter as a function of particle concentration	3		
Figure SI-4	Count rate as a function of particle concentration	3		
Figure SI-5	Gymnosperms and angiosperms anatomical structure	4		
Figure SI-6 and SI-7	SEM image of the four wood species	5-6		
Figure SI-8	Autocorrelation function and PSD for the reference dispersions	8-9		
Figure SI-9 to SI-13	DLS data for the tracers before and after filtration	10-14		
Figure SI-14 to SI-18	PSD for the tracers before and after filtration	15-19		
Figure SI-19	Size reduction percentage of the tracers before and after filtration	20		
Figure SI-20	PdI of the tracers before and after filtration	21		
Figure SI-21	Manual water filtration system with a beech wood cylindrical filter	23		
Figure SI-22	Structure and characteristics of the dye Molecules	24		
Figure SI-23	UV-vis spectra of the dye molecules	25		

Table SI-1	Density and dimensions of the anatomical features for the wood species	7
Table SI-2	Flow rate values through the three wood directions	7
Table SI-3	Nanopaerticle's removal per mass of wood	22

Figure SI-1. Left: Wood filtration disks (50 mm diameter and 1 mm thickness at 20 °C and 65% RH). Right: Setup for the filtration experiments: graduated funnel (1), filter flask (2), aluminum clamp (3), water trap (4), pressure gauge (5), and vacuum membrane pump (6).

Figure SI-2. DLS data from a 300 ppm NCC dispersion in water (filled symbols), DLS autocorrelation function $g_1(t)$ (red curve), and the parameters obtained after the analysis following the cumulant method for polydisperse samples.

Figure SI-3. Hydrodynamic diameter d_h as a function of particle concentration C for the different tracers: NCC (black), GG (red), Fe₂O₃ (blue), SiO₂ (green) and μ -SiO₂ (violet).

Figure SI-4. Mean count rate I_0 as a function of particle concentration C for the different tracers: NCC (black), GG (red), Fe₂O₃ (blue), SiO₂ (green) and μ -SiO₂ (violet).

Figure SI-5. Gymnosperms and angiosperms anatomical structure (Chen et al., 2020).

Figure SI-6. Scanning electron microscope image of the two gymnosperm species – A) silver fir and B) Douglas fir in the longitudinal (upper), radial (middle), and tangential (bottom) directions.

Figure SI-7. Scanning electron microscope image of the two angiosperm species – A) poplar and B) beech in the longitudinal (upper), radial (middle), and tangential (bottom) directions.

Table SI-1. Density ρ for the four wood species, mean diameter values d of tracheids (silver fir and Douglas fir) and vessels (poplar and beech) in the L-directions, and minor/major diameter values for rays and pits in the R- and T-direction.

wood	ρ (kg/m³)	d _L (μm)	d _R (μm)	d⊤ (μm)
silver fir	415	30-60	10-16	4-5
Douglas fir	530	30-60	8-18	7-8
poplar	400	80-150	9-19	7-8
beech	750	70-90	9-12	2-5

Table SI-2. Average flow rates during the filtration process for the four wood species in the three directions – water and 100 ppm nanoparticles.

Q (mL/(h•cm²))	silver fir	Douglas fir	poplar	beech
L	547	619	594	590
R	0.02	0.07	0.39	0.17
Т	0.01	0.01	0.06	0.05

Figure SI-8. Left: DLS data (open symbols) and autocorrelation function $g_1(t)$ (red curve) of a *ca.* 100 ppm dispersion of A) NCC, B) GG, C) Fe₂O₃, D) SiO₂, and E) μ -SiO₂ tracers. Right: Intensity particle size distribution (PSD) obtained from the deconvolution of the DLS fitting function. *Note:* the blue and green curves are the deconvolution curves when more than one particle distribution was present in the sample.

Figure SI-9. DLS data for the 130 ppm NCC dispersion (black), and after filtration for the four different wood species in the three orthotropic directions.

Figure SI-10. DLS data for the 104 ppm GG dispersion (black), and after filtration for the four different wood species in the three orthotropic directions.

Figure SI-11. DLS data for the 105 ppm Fe_2O_3 dispersion (black), and after filtration for the four different wood species in the three orthotropic directions.

Figure SI-12. DLS data for the 100 ppm SiO_2 dispersion (black), and after filtration for the four different wood species in the three orthotropic directions.

Figure SI-13. DLS data for the 115 ppm μ -SiO₂ dispersion (black), and after filtration for the four different wood species in the three orthotropic directions.

Figure SI-14. Intensity particle size distribution (PSD) of the NCC filtrates in the three directions (L, red; R, blue; T, green) for the four different wood species: A) silver fir, B) Douglas fir, C) poplar, and D) beech. The black curves correspond to the *ca.* 100 ppm dispersion before filtering.

Figure SI-15. Intensity particle size distribution (PSD) of the GG filtrates in the three directions (L, red; R, blue; T, green) for the four different wood species: A) silver fir, B) Douglas fir, C) poplar, and D) beech. The black curves correspond to the *ca.* 100 ppm dispersion before filtering.

Figure SI-16. Intensity particle size distribution (PSD) of the Fe_2O_3 filtrates in the three directions (L, red; R, blue; T, green) for the four different wood species: A) silver fir, B) Douglas fir, C) poplar, and D) beech. The black curves correspond to the *ca.* 100 ppm dispersion before filtering.

Figure SI-17. Intensity particle size distribution (PSD) of the SiO_2 filtrates in the three directions ((L, red; R, blue; T, green) for the four different wood species: A) silver fir, B) Douglas fir, C) poplar, and D) beech. The black curves correspond to the *ca.* 100 ppm dispersion before filtering.

Figure SI-18. Intensity particle size distribution (PSD) of the μ -SiO₂ filtrates in the three directions (L, red; R, blue; T, green) for the four different wood species: A) silver fir, B) Douglas fir, C) poplar, and D) beech. The black curves correspond to the *ca.* 100 ppm dispersion before filtering.

Figure SI-19. Size reduction percentage for the four wood species (S = silver fir, D = Douglas fir, P = poplar, B = beech) in the three directions (L, R and T) for the five tracers (NCC, GG, Fe₂O₃, SiO₂ and μ -SiO₂) after filtration. The orange dotted line corresponds to 100% efficiency.

Figure SI-20. Polydispersity index of the filtrates for the four wood species (S = silver fir, D = Douglas fir, P = poplar, B = beech) in the three directions (L, R and T) with the five tracers (NCC, GG, Fe₂O₃, SiO₂ and μ -SiO₂) after filtration. The orange dotted line corresponds to 100% efficiency.

Table SI-3. Nanoparticles removal per mass of wood for each tracer and for the four wood species and the three directions (L, R and T). The concentration before filtration for NNC, GG, Fe_2O_3 , SiO_2 and μ -SiO₂ was 130, 104, 105, 100 and 115 ppm, respectively.

wood	direction	NPs removal (mg/g)				
m (g)		NCC	GG	Fe ₂ O ₃	SiO ₂	μ-SiO₂
silver fir 0.471 g	L	0	0.8	1.6	0.1	2.1
	R	0	0.9	2.2	0.7	2.0
	Т	0	0.8	2.2	1.2	2.0
Douglas fir 0.601 g	L	0	0.3	0.8	0.2	1.5
	R	nd	0	1.7	0.4	1.6
	Т	nd	0	1.5	nd	1.7
poplar 0.454 g	L	0	0.8	1.7	0.1	2.3
	R	0	0.2	1.7	0	2.3
	Т	0.7	0.8	2.3	0.1	2.3
beech 0.851 g	L	0	0.5	0.9	0.1	1.2
	R	0.1	0.7	1.2	0.6	1.1
	Т	0	0.2	1.2	0.4	1.2

Figure SI-21. Details of a manual water filtration system using a cylinder of 4.5 mm in length and 2.5 mm in diameter beech wood sample in the L-direction. A) Filtration system and beech wood filter. B) Filtration of 100 ppm Fe₂O₃ NPs. C) Filtration of 1000 ppm μ -SiO₂ particles.

(AZ4) mw = 228 Da, V = 0.213 nm³, V_{exc} = 0.725 nm³, μ = 1.6 D, R_g = 0.39 nm, d_{max} = 1.4 nm (AZ12) mw = 227 Da, V = 0.210 nm³, V_{exc} = 0.715 nm³, μ = 14.1 D, R_g = 0.39 nm, d_{max} = 1.4 nm

(PH4) mw = 318 Da, V = 0.282 nm³, V_{exc} = 0.880 nm³, μ = 2.6 D, R_g = 0.35 nm, d_{max} = 1.0 nm (PH12) mw = 317 Da, V = 0.283 nm³, V_{exc} = 0.886 nm³, μ = 25.5 D, R_g = 0.35 nm, d_{max} = 1.0 nm

Figure SI-22. Molecular structure, charge density (blue: negative; red: positive), molar mass, molecular volume, excluded volume, dipole moment, radius of gyration and the largest molecular distance for the three dye molecules: A) methylene blue (MB), B) azobenzene (AZ), and C) phenolphthalein (PH).

B)

C)

Figure 23. UV-vis spectra of methylene blue (pH 7) – blue -, phenolphthalein (pH 4) – black -, phenolphthalein (pH 12) – violet -, and azobenzene (pH 12) – orange – with the corresponding peak maxima.