Supplementary Information

Wood-Supported Cationic Polyelectrolyte Membranes from A Reactive Ionic Liquid for Water Detoxification

Muzamil Jalil Ahmed^{1,2} and Antoni Sánchez-Ferrer^{1,*}

¹ Wood Materials Science, Wood Research Institute of Munich (HFM), Technical University of Munich, Winzererstrasse 45, 80797 Munich, Germany

² Thin-Film Lab, Advanced Materials and Sustainable Environment (AMSE) Group, NED University of Engineering and Technology, Main Campus, University Road, Karachi 75270, Sindh, Pakistan

* Corresponding Author: Antoni Sánchez-Ferrer.

ORCID: orcid.org/0000-0002-1041-0324 Email: sanchez@hfm.tum.de

Additional Description

AD SI-1	Spectral characterisation data for ECH and TEA.	2
---------	---	---

Additional Figures

Fig. SI-1	(a) FTIR-ATR, (b) 1H NMR, and (c) 13C NMR spectra for GTEAC, TEA and ECH 2
Fig. SI-2	1H-1H Correlation Spectroscopy (COSY) spectrum of GTEAC
Fig. SI-3	1H-13C Heteronuclear Single-Quantum Correlation (HSQC) spectrum of GTEAC 3
Fig. SI-4	1H-13C Heteronuclear Multiple-Quantum Correlation (HMBC) spectrum of GTEAC 4
Fig. SI-5	1H-1H Nuclear Overhauser Effect Spectroscopy (NOESY) spectrum of GTEAC4
Fig. SI-6	1H NMR spectrum of poly-GTEAC
Fig. SI-7	13C NMR spectrum of poly-GTEAC
Fig. SI-8	1H-1H Correlation Spectroscopy (COSY) spectrum of poly-GTEAC
Fig. SI-9	1H-13C Heteronuclear Single-Quantum Correlation (HSQC) spectrum of poly-GTEAC 6
Fig. SI-10	Photometric calibration curves for the determination of NO3-, SO42- and PO437
Fig. SI-11	Experimental and predicted 13C NMR spectra of GTEAC and potential decomposates7
Fig. SI-12	Quaternisation of lignin moieties in wood
Fig. SI-13	SEM micrographs of Pinewood and QWM L228
Fig. SI-14	Filling of the lumina and swelling of the cell wall/middle lamella models9
Fig. SI-15	The removal efficiency \Box after regeneration of the QWMs10
Fig. SI-16	Process Flow (Material and Energy flows) for the preparation of QWM filter discs 11

Additional Tables

Table SI-1	Effect of quaternisation on additional physicochemical properties and performance	12
Table SI-2	Effect of Vf/VQWM on the oxoanion removal efficiency	12
Table SI-3	Costing analysis for the QWM L22 filter disc.	13
Table SI-4	Eco-Scale assessment	14

Additional Description

AD SI-1. Spectral characterisation data for ECH and TEA

ECH: ¹H NMR (400 MHz, CDCl₃): 3.52 (1H, dd, C**H**-Cl, J = 4.6 and 11.8 Hz), 3.41 (1H, dd, C**H**-Cl, J = 6.1 and 11.8 Hz), 3.11 (1H, dddd, C**H**, J = 6.3, 4.5, 3.9 and 2.5 Hz), 2.76 (1H, dd, C**H**₂, J = 3.9 and 4.9 Hz), 2.56 (1H, dd, C**H**₂, J = 3.9 and 4.9 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): 51.4 (CH₂), 46.9 (CH), 45.4 (CH₂Cl) ppm. FTIR (ATR): 3040-2988 (st, CH₂), 1428 (b, CH₂), 1381 (b, *gem*-CH₂), 1248 (st, C-O), 1101 (st, C-O-C), 924 (b, CH-CH₂ (glycidyl)), 816-718 (st, C-Cl) cm⁻¹.

TEA: ¹H NMR (400 MHz, CDCl₃): 2.37 (6H, q, CH₂-N, J = 7.1 Hz), 0.88 (9H, t, CH₃. J = 7.2 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): 11.9 (CH₃), 11.7 (CH₂-N) ppm. FTIR (ATR): 2973-2934 (st, CH₃), 2889-2807 (st, CH₂), 1473-1385 (st, CH₂), 1202-1064 (b, C-NR₃) cm⁻¹.

Additional Figures

Fig. SI-1 (a) FTIR-ATR, (b) ¹H NMR, and (c) ¹³C NMR spectra for GTEAC, TEA and ECH.

Fig. SI-2 ¹H-¹H Correlation Spectroscopy (COSY) spectrum of GTEAC.

Fig. SI-3 ¹H-¹³C Heteronuclear Single-Quantum Correlation (HSQC) spectrum of GTEAC.

Fig. SI-4 ¹H-¹³C Heteronuclear Multiple-Quantum Correlation (HMBC) spectrum of GTEAC.

Fig. SI-5 ¹H-¹H Nuclear Overhauser Effect Spectroscopy (NOESY) spectrum of GTEAC.

Fig. SI-6 ¹H NMR spectrum of poly-GTEAC.

Fig. SI-7 ¹³C NMR spectrum of poly-GTEAC.

Fig. SI-8 ¹H-¹H Correlation Spectroscopy (COSY) spectrum of poly-GTEAC.

Fig. SI-9 ¹H-¹³C Heteronuclear Single-Quantum Correlation (HSQC) spectrum of poly-GTEAC.

Fig. SI-10 Calibration curves for the spectrophotometric determination of (a) NO_3^- , (b) SO_4^{2-} and (c) PO_4^{3-} oxoanions. Note: C' and C are the measured concentration and the standard concentration, respectively.

Fig. SI-11 Experimental (orange signal) and predicted ¹³C NMR spectra of GTEAC and potential decomposates, respectively, in the oil component of the synthesised reactive ionic liquid (RIL) - GTEAC.

Fig. SI-12 Quaternisation of lignin moieties in wood.

Fig. SI-13 SEM micrographs (cross-section) of Pinewood (a: 20 μm scale bar; and b: 100 μm scale bar) and QWM L22 (c: 20 μm scale bar; and d: 100 μm scale bar).

Fig. SI-14 Impact of GTEAC modification at the wood microscale.

Fig. SI-15 The removal efficiency η_i after the first filtration cycles for QWM filter discs: (a) QWM L11, (b) QWM L12 and (c) QWM L21 across different regeneration times t_{reg} .

Ahmed and Sánchez-Ferrer (2024)

10(14)

Fig. SI-16 Process Flow (Material and Energy flows) for the preparation of QWM filter discs. The end-of-life outcomes for the product are indicated.

Additional Tables

Table SI-1 Effect of quaternisation on additional physicochemical and performance-related properties, *e.g.*, mass swelling parameter q_m , volume swelling parameter q_v , density ratios ρ/ρ_0 , SFQ and BSQ ratios, oxoanion removal efficiency η_i ($i = NO_3^-$, SO_4^{2-} and PO_4^{3-}) and flux J_i (L/(m²·h)) for the four QWM filters.

Sample	L11	L12	L21	L22
T (°C)	60	60	90	90
t (h)	1	1.5	1	1.5
$q_{\rm m}$	1.74	1.89	1.72	1.85
$q_{ m V}$	1.10	1.28	1.10	1.31
$ ho/ ho_0$ ^a	1.13	1.13	1.27	1.33
$(\rho/\rho_0)_{swelling} ^b$	1.09	1.10	1.19	1.21
$(\rho/\rho_0)_{\rm filling}$ ^c	1.15	1.16	1.32	1.40
SFQ	0.67	0.50	0.62	0.63
BSQ	0.33	0.50	0.38	0.37
$\eta_{NO_{3}^{-}}(\%)$	38.8	49.9	75.3	83.9
$\eta_{S04^{2-}}$ (%)	19.1	36.5	85.4	98.3
$\eta_{PO_4^{3-}}$ (%)	56.1	73.4	85.8	88.9
$\text{Loss}_{\eta_i}~(\%)~^{\text{d}}$	2.5	8.4	6.0	11
$J_{N0_{3}^{-}}(L/(m^{2}\cdot h))$	348	348	385	440
$J_{S0_4^{2-}}(L/(m^2 \cdot h))$	293	348	385	403
$J_{PO_4^{3-}}(L/(m^2 \cdot h))$	257	275	348	385

Note: ^a post-modification density ratio for dry QWM filters at 55-60 °C after 1 h; ^b upper limit (maximum bulk swelling, BSQ); ^c lower limit (maximum surface filling, SFQ); ^d max η_i loss after > 8 runs.

Table SI-2 Effect of V_{f}/V_{QWM} on the oxoanion removal efficiency for QWM L22.

$V_{\rm f}\!/V_{\rm QWM}$	63.7 ^a	12.7 ^b
$\eta_{\mathrm{NO}_{3}^{-}}(\%)$	51.5	84.9
$\eta_{{\rm SO}_4^{2-}}(\%)$	89.1	98.6
$\eta_{{\rm PO}_4^{3-}}(\%)$	76.0	88.5

Note: V_f: ^a 250 mL; ^b 50 mL. V_{QWM}: 3.93 cm³

Inputs		TT 1	Amount Unit		Cost	(€/ut)			
		Unit -	Min	Max	Cost - (€/unit)	Min	Max	Comment	
								Technical Supplier	
1	Pinewood discs ^a	kg	0.001	0.002	4.585	0.007	0.010	25.4 mm (4/4) thickness, \notin 5.41 per 2360 cm ³ (1 FBM ^b), avg. density 500 kg/m ³	
2	Epichlorohydrin (ECH), ThermoSci, 99% pure	kg	0.007	0.011	41.200	0.304	0.453	Technical Supplier	
3	Triethylamine (TEA), Sigma- Aldrich, 99.7% pure, water-free	kg	0.008	0.013	64.279	0.546	0.813	Technical Supplier	
4	Deionised Water	kg	1.296	1.496	1.798	2.330	2.688	Technical Supplier	
5	Sodium Chloride, VWR	kg	0.029		0.034	0.034 0.001		Technical Supplier	
6	Electricity ^c	kWh	2.931	3.183	0.048	0.141 ^d	0.153 ^d	SWM Versorgungs GmbH; 57.66 €/kW/mo	
		I	Cost pe	er piece	€/kg	3.33 4.12			
					€/m ²	4.16	5.15	As dry weight, 2.54 g avg., and area: 19.63 cm^3	
					€/m ³	1797.10	2223.63	As density: 540 kg/m ³	

Table SI-3 Costing analysis for the QWM L22 filter disc (50 mm Ø, 2 mm, ~540 kg/m³).

Note: ^a 5 cm \emptyset , 2 mm thickness, 510-540 kg/m³ and V_{mem} = 3.91 cm³; ^b Board Foot (FBM); ^c München, Bayern, Germany; ^d 0.03 kWh for GTEAC synthesis (for general mixing and synthesis apparatus).

Table SI-4	Penalty calculation for the GTEAC synthesis and PW quaternisation using the Eco-Scale
	approach.

	Method Parameters	$\mathbf{P}_{\mathbf{i}}$
1.	Yield (83.2%) ^a	8.4
2.	Price of Reaction Components ^b	
	Inexpensive (<10 €/kg)	0
3.	Safety ^{c,d}	
	ECH (F, T, T ⁺ , C) (99%, 0.01 kg)	10
	TEA (F, T, C) (99.7%, 0.01 kg)	5
	PW (Nil.) (0.001 – 0.002 kg)	0
4.	Technical Setup	
	Common setup	0
	Inert Gas setup	1
5.	Temperature/time	
	Heating, < 1 h	2
6.	Workup and Purification	
	None	0
	Cooling to room temperature	0
	Total Penalty Score, TPS = $\sum_{i=1}^{N} P_i$	26.4
	Eco-Scale Score ^e :	73.6

Note: ^a (100 - Yield)/2; ^b *cf*. Table SI-3, and Methods: Glycidyltriethylammonium Chloride (GTEAC) Synthesis; ^c Based on the hazard warning symbols - Highest penalty reported; ^d Detailed scoring system provided elsewhere (Van Aken *et al.*, 2006); ^e 100 – TPS.

References

Van Aken, K., Strekowski, L., Patiny, L. (2006). EcoScale, a Semi-Quantitative Tool to Select an Organic Preparation Based on Economical and Ecological Parameters. *Beilstein J. Org. Chem.*, 2. https://doi.org/10.1186/1860-5397-2-3