Viscoelastic Properties of Colloidal Systems with Attractive Solid Particles at Low Concentration: A Review, New Results and Interpretations

Philippe Martinoty^a, Antoni Sánchez-Ferrer^{b,*}

Institut Charles Sadron, UPR 22, CNRS/UDS, 23 rue du Loess, BP 84047, F-67034 Strasbourg, France.
 Technical University of Munich, Wood Research Munich, Winzererstrasse 45, D-80797 Munich, Germany (corresponding author: sanchez@hfm.tum.de)

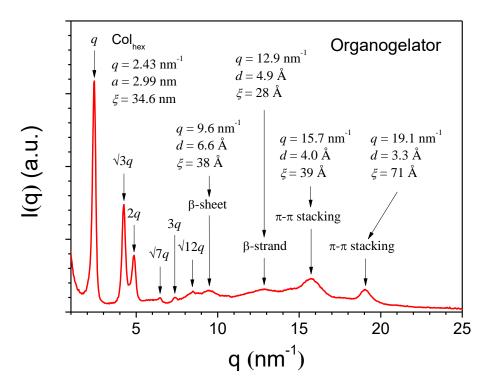


Fig. SI-1. X-ray intensity profile for the amino acid (AA) self-assembled organogelator molecule after synthesis (pristine powder) showing a columnar hexagonal packing of rod-like objects (peak sequence 1, $\sqrt{3}$, 2, $\sqrt{7}$, 3, $\sqrt{12}$), and the characteristic distances between the organogelator molecules (β -sheet, β -strand and π - π interactions).

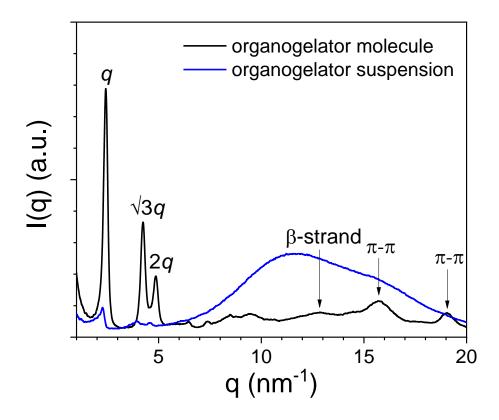


Fig. SI-2. X-ray intensity profile for the AA organogelator molecule (black) and the suspension of organogelator molecules (blue) in tetralin at a concentration of 3% and at a temperature of 25 °C for which the response of the suspension is solid-like. The results show a columnar hexagonal packing of rod-like objects, as well as the characteristic distances between the organogelator molecules (β -strand and π - π interactions). Note: the broad peak at q = 12.5 nm⁻¹ in the blue curve corresponds to the solvent peak in the organogelator suspension.